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A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed

in this study. First, the deflection and slope of the structure are computed from the unsteady strain. Velocities and

accelerations of the structure are computed using the autoregressive moving average model, online parameter

estimator, low-pass filter, and a least-squares curve fittingmethod, togetherwith analytical derivativeswith respect to

time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient

matrices, a rational function approximation, and a time-marching algorithm.A cantilevered rectangularwing is used

to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations,

and strains are computed using the CFL3D computational fluid dynamics code and the MSC/NASTRAN finite

element analysis code; and these CFL3D/NASTRAN-based results are assumed as measured quantities. Computed

deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-

based results. Computed aerodynamic forces based on lifting-surface theory at subsonic speeds are in goodagreement

with the target aerodynamic forces generated usingCFL3Dcodewith theEuler equation.This researchdemonstrates

the feasibility of obtaining induceddrag and lift forces through the use of distributed sensor technologywithmeasured

strain data.

Nomenclature

[A�s�] = modal aerodynamic influence coefficient matrix in
Laplace domain

Aij = ith mode and jth row coefficient for cosine function
C = chord length at typical section
[Cj] = jth aerodynamic lag term matrix in Roger’s

approximation at Mach Mi

[D0] = constant term matrix in Roger’s approximation
[D1] = linear term matrix in Roger’s approximation
[D2] = quadratic term matrix in Roger’s approximation
Bij = ith mode and jth row coefficient for sine function
[E] = state transition matrix
[G] = damping matrix
[K] = stiffness matrix
k = discrete time
LT = number of aerodynamic lag terms in Roger’s

approximation
M = Mach numbers
[M] = mass matrix
m = number of reduced frequencies
{N�s�} = orthonormalized aerodynamic force vector in

Laplace domain
fNgk = orthonormalized aerodynamic force vector at

discrete time k
nm = number of modes
fQagk = generalized aerodynamic force vector at discrete

time k
qD = dynamic pressure
fqgk = generalized coordinates vector at discrete time k
fqMgk = master degree-of-freedom vector at discrete time k
fqMe�t�g = measured master degree-of-freedom vector at

continuous time t
fqMegk = measured master degree-of-freedom vector at

discrete time k
fqSgk = slave degree-of-freedom vector at discrete time k

f ~qMeg = static equilibrium position of measured master
degree-of-freedom vector

s = Laplace variable
Ta = time step for time-marching algorithm
U = far-field air speed
fXgk = state vector at discrete time k
ϵmax = local maximum unsteady strain
ϵrms = root-mean-squared level of strain
fϵgk = strain vector at discrete time k
ζi = ith equivalent viscous damping factor
nrms = root-mean-squared level of noise
{η�s�} = orthonormalized coordinates vector in Laplace

domain
fηgk = orthonormalized coordinates vector at discrete

time k
κp = reduced frequencies �≡�ωpC∕2U��, where p is

equal to 1; 2; : : : ; m
σi = ith damping factor
[Φ] = eigenmatrix
[ΦM] = eigenmatrix corresponds to master degrees of

freedom
[ΦS] = eigenmatrix corresponds to slave degrees of freedom
Ωj = lag frequencies, where j is equal to 1; 2; : : : ; LT
ωdi = ith aeroelastic damped frequency
ωni = ith natural frequency of a structure
ωp = frequencies for computing aerodynamic influence

coefficient matrices
���T = transpose of a matrix ���
���−1 = inverse of a matrix ���
f _�g = velocity vector of f�g
f ��g = acceleration vector of f�g

I. Introduction

R EDUCING fuel consumption formodern aircraft is a goal of the
National Aeronautics and Space Administration (NASA)

Aeronautics Research Mission Directorate. This goal can be
accomplished by reducing airframe weight and aerodynamic drag;
however, reductions in both for a civil transport aircraft is a challenge
that may require extensive design changes for optimization and/or
active controls. In general, the same percentage of weight and drag
reductions can have a similar effect on fuel savings of a transport
aircraft [1].
Real-time measurement of aerodynamic drag force in flight is an

essential element for implementing an active drag control technique.
Two major sources of aerodynamic drag on a business jet and a
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long-haul transport aircraft at cruise speed are viscous drag and
induced drag, which are approximately 48–53% (one-half) and
21–38% (one-third) of the total aerodynamic drag [1]. Moreover,
induced drag comprises more than 90% of the total drag during
takeoff for a typical transport aircraft [2].
Traditionally, lift forces over the wing are measured using a

pressure gauge; however, the conventional pressure gauge with its
associated tubing and cabling can create weight and space limitation
challenges, and pressure data are available only at the discrete
location of the gauge. A new method to measure lift forces is needed
in order to overcome theweight and bulk associated with conventional
pressure gauges. Development of lightweight distributed sensors is a
critical technology that canallowcontinuousmonitoringof aerodynamic
surface shape, dynamic loading, and active control of flexiblemotion
and drag.
Flexible and lightweight optical fibers not only revolutionized

telecommunications but also altered the sensingworld. Optical fibers
can be used as fiber-optic sensors to measure strain and temperature
[3]. Fiber-optic sensors have been developed to measure colocated
strain simultaneously with very high accuracy using fiber Bragg
gratings (FBGs) [3]. Specifically, the fiber-optic strain sensor (FOSS)
uses a series of FBGs to obtain measurements at intervals as small as
every half-inch [4] along a fiber and at frequencies of several
kilohertz [5]. The ability of FBGs to operate at such high frequencies
makes them an ideal choice for both static and dynamic aerospace
applications. The methodology of optically measuring aerodynamic
forces described by Liu et al. [6] is developed based on beam
deformation theory. A two-camera videogrammetric system is used
for optical deformationmeasurements. The data reductionmodels for
extracting the normal force and pitching moment use either the local
displacement and slope change or the global beam deformation
profile.
The availability of wing deflections, velocities, and accelerations

at all element grid points across the structural finite element (FE)
model [7,8]will allow engineers to undertakemore accurate real-time
analyses of both internal elastic and inertial forces, as well as external
aerodynamic forces, at any point on the structure. These force values
over the entire surface of a structure may also find application in
structural health monitoring, active flexible motion control, and
active drag reduction.
This study focuses on the computation of unsteady aerodynamic

forces over an entire three-dimensional structure based on measured
strain information. First, deformations of the entire three-dimensional
structure are obtained using the two-step approach introduced by Pak
[7]. Next, velocities and accelerations are computed using an
autoregressive moving average (ARMA) model, online parameter
estimator [9], low-pass filter, and a least-squares curve fittingmethod
[10], together with analytical derivatives with respect to time. The
unsteady aerodynamic forces are computed from structural deflections,
velocities, and accelerations along with linear lifting-surface-based
modal aerodynamic influence coefficient (AIC) matrices and a rational
function approximation (RFA).

II. Mathematical Background

In this study, external unsteady aerodynamic forces are computed
from measured strain data. Simulated strain data using CFL3D [11]/
MSC/NASTRAN [12] codewill be assumed as measured strain data.
In the first section, deflections and slopes of an entire structure are
computed from measured strain through the use of the two-step
approach [7]. Velocities and accelerations of the structure are
computed in the second section using analytical derivatives with
respect to time. In the last section, unsteady aerodynamic forces are
computed in the time domain using the time-marching
algorithm [13].

A. Computation of Wing Deflection from Measured Strain

Consider the following structural dynamic governing equations of
motion as shown in Eq. (1):

�M�f �qgk � �G�f _qgk � �K�fqgk � fQagk (1)

where [M], [G], and [K] are mass, damping, and stiffness matrices,

respectively; and fqgk and fQagk are the generalized coordinates and
aerodynamic force vectors at discrete time k, respectively.
Out-of-plane deflections along FOSSs can be computed from

measured unsteady strain data fϵgk using a piecewise least-squares

method, anAkima spline, and a linear assumption, as described in the

two-step approach [7]. These computed deflections along the fibers

are combinedwith an FEmodel of the structure in order to interpolate

and extrapolate the deflection and slope of the entire structure

through the use of the system equivalent reduction and expansion

process (SEREP) [14]. All of the degrees of freedom (DOFs) in the

FE model can be rearranged, as shown in Eq. (2):

fqgk �
�
qM
qS

�
k

� �Φ�fηgk �
�
ΦM

ΦS

�
fηgk (2)

where fqMgk is the master DOF at discrete time k. In this approach,

deflections along the FOSS computed from the first step of the two-

step approach [7] are defined as the master DOF. The remaining

deflections and slopes over all of the structure are defined as slave

DOFs at discrete time k, fqSgk. In Eq. (2), matrices [ΦM] and [ΦS] are

eigenmatrices corresponding tomaster and slaveDOFs, respectively;

and fηgk is the orthonormalized coordinates vector at discrete time k.
Therefore, Eqs. (3) and (4) are derived from Eq. (2):

fqMgk � �ΦM�fηgk (3)

fqSgk � �ΦS�fηgk (4)

In Eq. (3), changing the master DOF at discrete time k fqMgk
to the corresponding measured value fqMegk, along the FOSS

gives Eq. (5):

fqMegk � �ΦM�fηgk (5)

where fqMegk is obtained from the first step of the two-step approach

[7]. Premultiplying �ΦM�T to Eq. (5) with matrix inversion gives

Eq. (6) for computing the orthonormalized coordinates vector at

discrete time k:

fηgk � ��ΦM�T �ΦM��−1�ΦM�TfqMegk (6)

and the generalized coordinates vector fqgk of Eq. (7) is obtained

from substituting Eq. (6) into Eq. (2):

fqgk �
�
ΦM

ΦS

�
��ΦM�T �ΦM��−1�ΦM�TfqMegk (7)

B. Computation of Velocity and Acceleration from Computed
Wing Deflection

A simple harmonic motion assumption for the computation of

wing acceleration works with undamped free vibration problems [8],

but this assumption cannot handle the heavy damping issues

associated with aeroelastic oscillation problems. Also, the

orthonormalized coordinate vector fηgk used for the computation

of velocities in [8] is not fully decoupled because of coupling between

structural dynamics and unsteady aerodynamics.
A new approach for the computations of aeroelastic velocity and

acceleration is proposed in this study. Velocity and acceleration

vectors at each sensor location at discrete time k, f _qMegk and f �qMegk,
of an aeroelastic structural motion are computed using Eq. (8)

together with analytical derivatives with respect to time:

fqMe�t�g � f ~qMeg �
(Xnm

i�1

e−σi t�Aij cos�ωdit� � Bij sin�ωdit��
)

(8)
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where σi�� ζiωni� and ωdi are the ith damping factor and damped
frequency, respectively; and nm is the number of modes. A vector
f ~qMeg represents the static equilibrium position of the unsteady wing
motion. The coefficients Aij and Bij, j � 1; 2; : : : ; n, for the jth row
element of the vector can be fitted using a least-squares curve fitting
technique [9,10]. In this study, σi and ωdi are computed using an
ARMAmodel, an online parameter estimator, and a sine Butterworth
low-pass filter [15]. It should be noted in Eq. (8) that σi and ωdi are
estimated; therefore, the least-squares curve fitting in this study is
based on a linear fitting. From Eq. (8), the velocity and acceleration
are computed using analytical derivatives with respect to time t. The
FE model is not used for the computation of fqMegk, f _qMegk,
and f �qMegk.
Velocity and acceleration vectors over the entire structure are also

computed using Eqs. (9) and (10) (SEREP transformation):

f _qgk �
�
ΦM

ΦS

�
��ΦM�T �ΦM��−1�ΦM�Tf _qMegk (9)

f �qgk �
�
ΦM

ΦS

�
��ΦM�T �ΦM��−1�ΦM�Tf �qMegk (10)

C. Computation of Aerodynamic Force from Wing Deflection,
Velocity, and Acceleration

First, modal AIC matrices are computed at Mach number M and
reduced frequencies κp�≡�ωpC∕2U�; p � 1; 2; : : : ; m� using
lifting-surface theory:

�A�κ1��; �A�κ2��; : : : ; �A�κm��

where C is the chord length at a typical section, and U is a far-field
airspeed. These modal AIC matrices can be approximated with
respect to frequency and Laplace variable s using an RFA. In this
study, Roger’s approximation [Eq. (11)] is selected for the RFA:

�A�s�� � �D0� � s�D1� � s2�D2� �
XLT
j�1

s�Cj�
s� Ωj

(11)

Substituting Eq. (2) into Eq. (1) and premultiplying �Φ�T yields
Eq. (12):

�Φ�T �M��Φ�f�ηgk � �Φ�T �G��Φ�f_ηgk � �Φ�T �K��Φ�fηgk
� �Φ�TfQagk � fNgk (12)

The orthonormalized aerodynamic force vector {N�s�} in the
Laplace domain is in Eq. (13):

fN�s�g � qD�A�s��fη�s�g

� qD

�
�D0�fη�s�g � s�D1�fη�s�g � s2�D2�fη�s�g

�
XLT
j�1

s�Cj�fη�s�g
s� Ωj

�
(13)

The time-marching algorithm for the computation of the
orthonormalized aerodynamic force at discrete time k can be
summarized as follows [13] in Eqs. (14–21):

fNgk � qD��D0�fηgk � �D1�f_ηgk � �D2�f�ηgk � �C�fxgk� (14)

fXgk � �E�fXgk−1 � �θ��B� f_ηgk � f_ηgk−1
2

(15)

where

�E� � e�A�Ta (16)

�θ� �
Z

Ta

0

e�A��Ta−τ� dτ (17)

�A� �

2
6664
−Ω1I 0 : : : 0

0 −Ω2I : : : 0

..

.

0

..

.

0

. .
. ..

.

: : : −ΩLTI

3
7775 (18)

�B� �

2
664

I
I
..
.

I

3
775 (19)

�C� � �C1C2; : : : ; CLT � (20)

fXgk �

8>>><
>>>:

x1
x2
..
.

xLT

9>>>=
>>>;

k

(21)

and Ta is a sampling time. Orthonormalized coordinate vectors fηgk,
f_ηgk, and f�ηgk are computed from Eqs. (22–24):

fηgk � ��ΦM�T �ΦM��−1�ΦM�TfqMegk (22)

f_ηgk � ��ΦM�T �ΦM��−1�ΦM�Tf _qMegk (23)

f�ηgk � ��ΦM�T �ΦM��−1�ΦM�Tf �qMegk (24)

From Eq. (12), the generalized aerodynamic force vector at

discrete time k, fQagk, is shown in Eq. (25):

fQagk � ��Φ�T�−1fNgk (25)

Fig. 1 Steps used to compute aerodynamic force frommeasured strain.

1478 PAK

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
R

M
ST

R
O

N
G

 F
L

IG
H

T
 R

E
S 

C
E

N
T

E
R

 o
n 

A
ug

us
t 1

5,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

41
40

 



A rectangular matrix �Φ�T can be inverted using a singular-value

decomposition technique. The steps used to compute aerodynamic

force from measured strain are depicted in Fig. 1.

In general, aerodynamic force vectors from a lifting-surface theory

are normal to the aerodynamic model configuration. Therefore,

unsteady induced drag force as well as lateral force can be defined

using the surface normal vector during the unsteady wing surface

oscillation, as shown in Fig. 2.

D. Summary of Computation of Aerodynamic Force from Strain

The following matrices should be calculated before starting the

computation of unsteady aerodynamic loads during flight:
1) The first matrices are modal AIC matrices and corresponding

matrices from RFA: [D0], [D1], [D2], [C1C2; : : : ; CLT], [E] in
Eqs. (14) and (16), and [θ] [B] in Eq. (15).Matrices �E� and [θ] [B] are
the function of aerodynamic lag frequencies for the Roger’s
approximation.
2) The second matrices are the transformation matrices based

on the SEREP approach and singular value decomposition:
��ΦM�T �ΦM��−1�ΦM�T and ��Φ�T�−1.
Step 1) Collect unsteady strain fϵgk.
Step 2) Compute wing deflection along the FOSS line, fqMegk, using
the two-step approach.

Step 3) Computewing velocity and acceleration along the FOSS line:
f _qMegk and f �qMegk.
Step 4) Compute fηgk, f_ηgk, and f�ηgk using Eqs. (22–24).
Step 5) Compute the orthonormalized aerodynamic force vector fNgk
using Eqs. (14) and (15).
Step 6) Convert the orthonormalized aerodynamic force vector fNgk
to the generalized aerodynamic force vector fQagk using Eq. (25).
The z-directional load is the lift load.
Step 7)Compute induced drag and lateral forces using surface normal
vectors together with the lift force in step 6.
Steps 1 through 3 are the model independent procedures. On the

other hand, steps 4 through 7 are dependent on the structural dynamic
model Φ and the unsteady aerodynamic model, [D0], [D1], [D2],
[C1C2; : : : ; CLt], [E], and [θ] [B].

III. Results and Discussions

A cantilevered rectangular wing, shown in Fig. 3, was selected for
the validation of the proposed approach. This wing, with 6% circular
arc cross sections and an aspect ratio of 5.0, was built and tested at the
NASA Langley Research Center (Hampton, Virginia) in 1959 [16].
The model had a uniform chord length of 4.56 in., a span length of
11.5 in., and a thickness of 0.065 in. of aluminum insert covered with
flexible plastic foam (Fig. 3). The material properties of the aluminum
insert were assigned a Young’s modulus E of 9.208 Msi
(Msi � 1;000;000 psi); a shear modulus G of 3.837 Msi; and a
mass density of 0.1 lb∕in:3. The shaped lumped weights were used to
match the local cross-sectional weight distribution of the plastic foam.
Therefore, the small lumped weights were used near the leading and
trailing edges, and the large lumped weights were used near the
midchord area. Detailed material properties are shown in Table 1.
To represent the six FOSSs, the model was fit with 300 beam elements

Fig. 3 Cantilevered rectangular wing with six FOSSs.

Table 1 Detailed material properties
of the cantilevered plate wing

Properties of aluminum insert Number

Young’s modulus E 9207766 psi
Shear modulus G 3836570 psi
Density 0.1 lb∕in:3
Total weight 0.3806 lb
Xcg 2.28 in.
Ycg 5.75 in.
Thickness 0.065 in.

Table 2 Measured and computed natural
frequencies

Mode Measured, Hz Computed, Hz Comment

1 14.29 14.29 First bending
2 80.41 80.17 First torsion
3 89.80 89.04 Second bending

Fig. 4 CFD grid for CFL3D computations based on Euler grid.

Fig. 2 Definition of the unsteady aerodynamic forces from a linear
lifting-surface theory.
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(50 per each fiber) that computed the axial strain along the length of the
wing. These six simulated FOSSswere assumed to be zeroweightwith
zero stiffness (Fig. 3).
The frequencies and mode shapes of this cantilevered wing model

are computed using the MSC/NASTRAN code [12]. Measured and
computed natural frequencies are summarized in Table 2. Unsteady
aerodynamic forces as well as wing deflections and velocities are
computed using the CFL3D code [11]. However, acceleration and
unsteady strain data are not available from the CFL3D computation;
therefore, the MSC/NASTRAN code is used to compute target
acceleration and simulated measured strain data.
A computational fluid dynamics (CFD) grid configuration for the

CFL3D computations based on the Euler grid is given in Fig. 4.
TheCFDgrid is amultiblock (97 × 73 × 57) gridwithH-H topology.
The time-step size of the unsteady CFL3D computation is
0.000060515 s, and a total of 10,240 time steps are used in this
computation. The unsteady aerodynamic theory used in Sec. II.C is
based on a linear lifting-surface theory: ZAERO code [17].
Therefore, a subsonic Mach number should be selected for the
CFL3D computer simulation to minimize a nonlinear transonic
effect. Local Mach number distributions under steady-state
conditions with CFL3D computer simulations are given in Fig. 5.
In this figure, local Mach number distributions at Mach 0.714 are
high subsonic conditions. Themaximum localMach number reaches
the 0.8–0.9 range near the center chord, as shown in Fig. 5a.
Supersonic subregions are observed in the Mach 0.875 case (that is,
transonic speed), as shown in Fig. 5b. Therefore, a Mach number of
0.714with dynamic pressure of 1.455 psi is selected for the validation
of the current approach. These CFD-based aerodynamic forces are
assumed as the target forces in this study.
TheMSC/NASTRAN code was used to calculate unsteady strains

in this study, and these computed strains are considered as the
measured strains. For the CFL3D computations, structural mode
shapes should be provided at the CFD grid points. In this study, the
structural grid points and the CFDgrid points are connected using the
interpolation elements (“RBE3 element” in MSC/NASTRAN
terminology) instead of using a surface-splining technique. In the
CFL3D code, unsteady aerodynamic force vectors are computed at
the centroids of CFD cells. Therefore, a splining between structural

grid points and these centroids is also needed for the transient
response computationswith theMSC/NASTRANcode. In this study,
RBE3 elements are also created between structural grids and these
centroids of CFD cells, as shown in Fig. 6. It should be noted that the
well-known numerical problems associated with the Harder and
Desmarais surface-spline technique [18] can be easily overcome
through the use of the current technique with RBE3 elements.
TheMSC/NASTRANmodal transient response analysis (solution

112) with 1024 time steps and a step size of 0.00060515 s is used to
compute the strains, deflections, velocities, and accelerations. Time
histories of aerodynamic force vectors at centroids of each CFD cell
over the upper and lower wing surfaces are computed during
unsteady CFL3D computation. These unsteady aerodynamic force
vectors at each time step are converted to the applied force vectors at
structural grids for the modal transient response analysis. The same
initial velocity conditions used for the CFL3D computation are also
used for the modal transient response analysis with the first three
modes. The structural deflection and velocity values at the leading

Fig. 5 Local Mach number distributions at Mach 0.714 and 0.875.

Fig. 6 RBE3 elements between structural grid points and CFD grids
and centroids (FEM, finite element method).

Fig. 7 Deflection and velocity comparisons using CFL3D and MSC/
NASTRAN codes.
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edge of the wingtip section obtained through the use of the CFL3D

and MSC/NASTRAN codes are compared in Fig. 7. Excellent

deflection and velocitymatching are observed in this figure. Therefore,

strainvalues computed from theMSC/NASTRANcode can be used as

measured strain values to estimate the unsteady aerodynamic forces

computed using the CFL3D computer simulation with the Euler

equation.
Time histories of strain under different levels of random white

noise are shown in Fig. 8. Figure 8a shows time histories of strain at

the leading edge of the wing-root section. Random white noise is

added to the unsteady strain data to demonstrate the robustness of the

proposed approach. The strain signal-to-noise ratio (SNR) is defined

as shown in Eq. (26):

SNR ≡ 20 × log10
ϵrms

nrms

(26)

Fig. 8 Time histories of strain under different levels of random white noise.

Fig. 9 Summary of the least-squares curve fitting and deflection prediction.

Fig. 10 Time histories of Z deflection under SNR � 0 dB.
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where ϵrms and nrms represent the root-mean-squared (rms) level of
the unsteady strain and added noise, respectively. In this study, the
SNRs of 10, 6, and 0 dB are used in the computer simulation.
Corresponding time histories are shown in Figs. 8b–8d. The local
SNR (LSNR) is defined as follows:

LSNR ≡ 20 × log10
ϵmax

nrms

(27)

where ϵmax is the local maximum absolute unsteady strain value. In
Fig. 8d, the LSNR value is the same, with the SNR value near 0.33 s.
The LSNR value is larger than the SNR value before 0.33 s. The
LSNR value becomes −9.8 dB near 0.59 s.
In this study, robustness of the proposed least-squares curve

fitting method [Eq. (8)] is tested using time histories of unsteady
strain, shown in Fig. 8. A moving time window of 56 time steps is
used in this curve fitting, as shown in Fig. 9. The least-squares curve
fittingmethod in Eq. (8) is a nonlinear fitting problem; however, this
nonlinear fitting problem becomes a linear problem when the
damping factors and damped aeroelastic frequencies, σi andωdi, are
provided. In this study, a sine Butterworth low-pass filter [15]with a
cutoff frequency of 200 Hz is used to estimate reasonable
frequencies and damping factors from unsteady strain data. The
number of ARMA coefficients is seven, and the sampling time
for this online estimator is 0.004236 s (eight steps). In this study,
a recursive least-squares method based on Bierman’s U-D
factorization algorithm with a forgetting factor of 0.98 is used as an
online parameter estimator [9]. Once the fitted coefficients f ~qMeg,
Aij, and Bij are obtained based on the current 56 time steps, then
deflections are predicted for the next eight time steps. These eight
steps correspond to the one sampling period for the online
parameter estimator. As shown in Fig. 9, the damping factors and
damped aeroelastic frequencies, σi and ωdi, are updated with every
sampling time step.
Time histories of Z deflection, velocity, and acceleration under

0 dB SNR are shown in Figs. 10–12, respectively. The least-squares
curve fitting starts after the converged damping factors and damped

Fig. 11 Time histories of Z velocity under SNR � 0 dB.

Fig. 12 Time histories of Z acceleration under SNR � 0 dB.

Fig. 13 Time histories of total induced drag force under different levels of random white noise.
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frequencies are obtained; thus, velocities and accelerations are not

available until 400 steps (0.2414 s), as shown in Figs. 11 and 12. In

Figs. 10–12, the solid lines and dashed lines represent target values;

and corresponding deflection, velocity, and acceleration values

before (fqMegk, f _qMegk, and f �qMegk) and after (fqgk, f _qgk, and f �qgk)
using the SEREP transformation, respectively.

Fig. 14 Time histories of total lateral force under different levels of random white noise.

Fig. 15 Time histories of total lift force under different levels of random white noise.
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The effect of the piecewise least-squares method for the

computation of the unsteady deflection can be observed during the
learning period as shown in Fig. 10. Even with noisy strain data

(LSNR of 8.7 to 1.6 dB), unsteady deflections are successfully
obtained. The effect of the SEREP transformation can also be

observed in Figs. 10–12 as the solid line versus the dashed line. Noise
in the solid line becomes smoother after the SEREP transformation is

applied. Finally, the effect of the least-squares curve fittingmethod in
Eq. (8) can be clearly observed before and after 0.2414 s, as shown in
Fig. 10. Noise in unsteady deflection during the learning period is

drastically reduced after the least-squares curve fitting is used. Wing
deflection, velocity, and acceleration are in excellent agreement with

corresponding target values, as shown in Figs. 10–12. The proposed
least-squares curve fitting method together with the analytical time

derivatives performs excellently, even with an LSNR of −9.8 dB.
ModalAICmatrices are computed using theZAEROcode atMach

0.714. The ZAERO-based unsteady aerodynamic model configura-

tion is shown in Fig. 2a. Reduced frequencies of 0.0, 0.006, 0.015,
0.035, 0.08, 0.13, and 0.26 are selected for this computation. Roger’s

approximationwith four aerodynamic lag terms is used for anRFAof
these modal AIC matrices. The element-by-element least-squares

curve fitting with a constraint at the steady-state condition, and a
reduced frequency of zero, is used in the Roger’s approximation

procedure. Aerodynamics lag frequencies are 11.81 Hz
(κ � 0.0177), 47.22 Hz (κ � 0.0707), 106.2 Hz (κ � 0.1591), and
188.9 Hz (κ � 0.2829).
The total induced drag, lateral, and lift forces obtained from the

current approach under different levels of random white noise are
compared with the corresponding target aerodynamic forces from

CFL3D computations in Figs. 13–15. The least-squares curve fitting
method starts at 0.2414 s in Figs. 13–15. It is interesting that the

computed forces between times of 0 to 0.2414 s are based on
unsteady deflection only. Velocities and accelerations are assumed to

be zero during the learning period, as shown in Figs. 11 and 12. The
effects of noise can be observed in Fig. 13. Computed total induced

drag forceswith an SNRof 0 dB are themost noisy result, as shown in
Fig. 13d.
The wing thickness effects on induced drag and lateral forces

of 0.0353 and 0.0961 lbf, respectively, were subtracted from the

CFD-based target force to have zero force at the steady-state
condition in Figs. 13 and 14. In general, the current approach based

on lifting-surface theory gave smaller forces than the target values in
the cases of lift and lateral forces. The computed induced drag forces

were in good agreement with the corresponding target drag force, as
shown in Fig. 13.
Scaled total induced drag, and lateral and lift forces are shown in

Fig. 16. In [19], unsteady aerodynamic model tuning of the

aerostructures test wing 2 for accurate flutter prediction was
performed at two different flight conditions, and the scaling factors

obtained were 1.2579 and 1.2719. The average scaling factor of
1.2649 was multiplied to the aerodynamic forces. When this scaling

factor was multiplied, the lateral and lift forces were in good
agreement with the corresponding target values computed using the

CFL3Dcode, as shown in Figs. 16b and 16c.Accuracy of the induced
drag force in Fig. 16a became worse than the previous value.

Therefore, it could be concluded that the small deviations between
the currentmethod and theCFL3D codewith the Euler equationwere

mainly due to the uncertainty in the lifting-surface aerodynamic
theory used in this study.
Recommendations for the practical application of unsteady

deformation computations were given on page 1071 of [7]. First, it is

recommended in this study that the lifting-surface theory used for the
unsteady aerodynamic force computations be upgraded to a method

based on steady and unsteady CFD computations to improve the
accuracy of the current proposed approachwith transonic aeroelasticity

or high angle-of-attack flow. Second, an active induced drag control
system based on the current proposed methodology will be a more

physics-based approach than the drag control system based on
measuring fuel flow. Finally, a reduced-order aeroelastic equation of

motion with a smaller matrix size is recommended for an active

flexible motion control system, as well as an active induced drag
control system.

IV. Conclusions

In this study, unsteady aerodynamic forces were computed using
simulated measured strain data. From unsteady strain information,
unsteady structural deflections were computed using the two-step
approach. Unsteady velocities and accelerations were computed using
anautoregressivemovingaveragemodel, anonlineparameter estimator,
a low-pass filter, and a least-squares curve fitting method, together with
analytical derivatives with respect to time. The deflections, velocities,
and accelerations at each sensor location were independent of structural
and aerodynamic models. The distributed strain data together with the
current proposed approaches could therefore be used as distributed
deflection, velocity, and acceleration sensors.
The general structural deflections, velocities, and accelerations

were converted to the orthonormalized coordinates to compute

Fig. 16 Time histories of scaled total forces without white noise.
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orthonormalized aerodynamic force vectors usingmodal aerodynamic
influence coefficient matrices. The modal aerodynamic influence
coefficient matrices were fitted in the Laplace domain using Roger’s
approximation. Laplace-domain aerodynamics were converted to the
time domain using a time-marching algorithm. The orthonormalized
aerodynamic force vectors were transformed to the generalized
coordinates using pseudomatrix inversion-based on singular-value
decomposition. Finally, induced drag and lateral forces were obtained
using surface-normal vectors. In general, computed aerodynamic
forces based on the lifting-surface theory in subsonic speeds were in
good agreement with the target aerodynamic forces generated using
the CFL3D code with the Euler equation. This research demonstrated
the feasibility of sensing induced drag and lift forces through the use of
distributed sensor technology, together with the fiber-optic strain
sensor. Thus, an active induced drag control system could be designed
using these twocomputed aerodynamic forces, induceddragand lift, to
improve the fuel efficiency of an aircraft.
In this study, interpolation elements (RBE3 elements in MSC/

NASTRAN terminology) between structural finite elements grids
and the computational fluid dynamics grids and centroids were
successfully incorporated with the unsteady aeroelastic computation
scheme. The numerical problems often associated with the Harder
and Desmarais surface-splines technique [18] are thus bypassed
using the current technique with the RBE3 elements.
It should be emphasized that the deflection, velocity, and

acceleration computation based on the proposed least-squares curve
fitting method are validated with respect to the unsteady strain with a
LSNR of−9.8 dB. Therefore, the current methodology of computing
unsteady aerodynamic forces can be applied to the actual flight-test
data. The most critical technology for the success of the proposed
approach is the robust online parameter estimator because the least-
squares curve fitting method depends heavily on aeroelastic system
frequencies and damping factors.
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